Etuma Blog

Lists by Topic

see all

Subscribe to Email Updates

Matti Airas

My passion is to figure out how to turn open-text feedback into well structured usable information.

Recent Posts

Analyzing Feedback the Natural Way: Rule-Based Semantic Analysis

[fa icon="calendar'] Apr 21, 2017 11:47:02 AM / by Matti Airas posted in text analysis methods

[fa icon="comment"] 0 Comments

A rule-based semantic analysis system understands language structures and the relationships between words. It has a massive set of pre-configured rules that enable automatic and accurate real-time analysis. Developing a rule-based language analysis system takes a considerable amount of work and time, sometimes stretching even up to dozens of years. Very few companies have the skills or resources to develop such a system.

Read More [fa icon="long-arrow-right"]

8 Customer Experience Text Analysis Mistakes

[fa icon="calendar'] Apr 12, 2017 4:06:55 PM / by Matti Airas posted in net promoter system, insight distribution, text analysis methods

[fa icon="comment"] 0 Comments

We've seen hundreds of customer experience feedback analysis projects during the past seven years. Certain mistakes or rather misconceptions show up in most projects. One of them is to analyze text in vacuum. Knowing what kind of person left a comment makes the feedback analysis results more valuable. The other is to leave the analysis results and insight extraction solely to the analytics team. You need to ensure that there is an insight distribution system that customer experience stakeholders actually use. They also need to close the loop, that is, fix the underlying issue.

Read More [fa icon="long-arrow-right"]

What is Customer Experience Text Analysis and Why You Just Might Need It

[fa icon="calendar'] Mar 13, 2017 9:17:35 AM / by Matti Airas posted in Business Benefits, text analysis

[fa icon="comment"] 0 Comments

CX  text analysis is a an application, which connects customer and employee voice to company's business strategy, customer value proposition and corporate values. 

Loyalty management surveys, like NPS, have increased the volume of incoming text comments, and an ever larger share of customer complaints arrive via email, web form and social media. All that feedback is unstructured text.

Read More [fa icon="long-arrow-right"]

How to Create a Customer Feedback Taxonomy

[fa icon="calendar'] Mar 10, 2017 4:26:09 PM / by Matti Airas posted in Feedback Analysis, feedback categorization, text analysis methods

[fa icon="comment"] 0 Comments


There are four ways to create the categorization system (Codeframe, Taxonomy). But whatever way you choose, make sure that the system takes into account both top-down (what the management wants to see) and bottom-up (what the text makes possible) approaches. Well working categorization system requires a couple of iterations and is a balance between these two views. 

Designing and implementing a uniform categorization system might seem like a daunting task but the benefits are clear. Uniformly categorized customer comments have the power to transform your organization.

Read More [fa icon="long-arrow-right"]

Six Customer Feedback Taxonomy Requirements

[fa icon="calendar'] Mar 10, 2017 4:20:16 PM / by Matti Airas posted in Feedback Analysis, feedback categorization, text analysis methods

[fa icon="comment"] 0 Comments

Customer feedback taxonomy (aka Codeframe, Categorization system) enables you to report verbatim analysis results in the same way as structured information (like sales figures) is reported. It creates a common language within a company and brings customer’s voice into the decision making process. It also has the power to transform the organization to be more customer centric.

Here are the most important categorization system requirements. 

1. Encompassing

Capture all relevant words, phrases and brands from open-ended feedback.

Read More [fa icon="long-arrow-right"]

Four Methods for Categorizing Customer Feedback

[fa icon="calendar'] Mar 10, 2017 4:15:23 PM / by Matti Airas posted in Feedback Analysis, text analysis methods

[fa icon="comment"] 0 Comments

You cannot analyze customer feedback without categorizing it. This categorization has to be done systematically, relevantly and consistently. Your categorization system (Codeframe) needs to be uniform across the organization otherwise the text analysis results cannot be used in top management reporting.

Signal categorization turns open-text into statistical information, which enables you to

  • Detect patterns (trends, weak signals);
  • Benchmark organizational units; and
  • Distribute the customer comments in real-time based on customer experience stakeholder roles.

There are four ways to categorize feedback:

1. Tabulate the feedback manually

If you get only few hundred Signals per month, this is a manageable method. With higher volumes this task becomes slow, expensive and the results are inconsistent. Humans can handle only about a dozen categories. This means that e.g. all weak signals and most emerging trends belong to the “other” category.

Read More [fa icon="long-arrow-right"]

Do you need a tool for analyzing text?

[fa icon="calendar'] Mar 10, 2017 3:41:39 PM / by Matti Airas posted in Feedback Analysis

[fa icon="comment"] 0 Comments

The volume of customer and employee feedback is increasing and more and more of this feedback is in the form of open-ended text comments. Naturally you need to respond to every customer complaint but what else should you do with this pile of unstructured data if anything?
Read More [fa icon="long-arrow-right"]

Five and a Half eCommerce Loyalty Factors

[fa icon="calendar'] Mar 9, 2017 9:29:16 AM / by Matti Airas posted in customer loyalty, eCommerce

[fa icon="comment"] 0 Comments

A couple of weeks ago I wrote about the eCommerce customer experience in general. This week I am digging deeper into the five and a half factors that form the eCommerce customer experience.

We have analyzed millions of webshop customer’s comments. This has taught us how customers talk about eCommerce. I have gathered in this blog post the key insights on how to analyze eCommerce customer comments and understand their loyalty.

Read More [fa icon="long-arrow-right"]

12 Feedback Text Analysis Visualization Tips

[fa icon="calendar'] Mar 1, 2017 4:59:08 PM / by Matti Airas posted in insight distribution

[fa icon="comment"] 0 Comments

Before starting extracting actionable insights from customer feedback, you need to set up an enterprise insight process that:

  1. Gathers feedback: you actively solicit feedback through many channels and touchpoints, crawl social media, and analyze contact and support center feedback; and
  2. Analyze feedback: you've implemented a feedback analysis system that detects the sentiment and categorizes all open-ended customer comments according to an industry specific categorization system (Codeframe).

This gives you  an excellent starting point: all the comments are categorized by topic and sentiment. But turning that information into actionable insights isn't a straight foward process. It requires quite a bit of creative data analytics and visualization work.

Follow these 12 steps and you will be able to monitor the customer journey, identify the loyalty drivers and improve your bottom line.

Read More [fa icon="long-arrow-right"]

How to Maximize Customer Revenue in eCommerce

[fa icon="calendar'] Feb 23, 2017 9:55:02 AM / by Matti Airas posted in Customer Journey, eCommerce

[fa icon="comment"] 0 Comments

When many web stores sell the same or comparable products within the same geographical area the only thing that sets you apart from competition is the shopping experience. The shopping experience becomes even more important when you don’t sell your own products. And when it comes to an excellent eCommerce experience, there is a benchmark: Amazon has set the bar. Do you know how you compare to the one-click wonder?


Read More [fa icon="long-arrow-right"]